Further insights into the phylogeny of Arabidopsis (Brassicaceae) from nuclear Atmyb2 flanking sequence.
نویسندگان
چکیده
Arabidopsis thaliana is the preeminent plant model organism. However, significant advances in evolution and ecology are being made by expanding the scope of research beyond this single species into the broader genus Arabidopsis. Surprisingly, few studies have rigorously investigated phylogenetic relationships between the nine Arabidopsis species, and this study evaluates both these and hypotheses related to two instances of intra-generic hybridization. DNA sequences from the 5' flanking region of the nuclear Atmyb2 gene from 12 of the 14 Arabidopsis taxa were used to reconstruct the generic phylogeny. The strict consensus tree was highly concordant with previous studies, identifying lineages corresponding to widespread species but exhibiting a large basal polytomy. Our data indicates that the paternal parent of the allopolyploid A. suecica is A. neglecta rather than A. arenosa s.l., although the need for a detailed phylogeographical study of these three species is noted. Finally, our data provided additional phylogenetic evidence of hybridization between Arabidopsis lyrata s.l. and A. halleri s.l. Taken together, the well-defined lineages within the genus and the potential for hybridization between them highlight Arabidopsis as a promising group for comparative and experimental studies of hybridization.
منابع مشابه
Evolution of the Arabidopsis telomerase RNA
The telomerase reverse transcriptase promotes genome integrity by continually synthesizing a short telomere repeat sequence on chromosome ends. Telomerase is a ribonucleoprotein complex whose integral RNA subunit TER contains a template domain with a sequence complementary to the telomere repeat that is reiteratively copied by the catalytic subunit. Although TER harbors well-conserved secondary...
متن کاملEvidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen.
The transcription factor AtMYB2 binds to two sequence motifs in the promoter of the Arabidopsis ADH1 gene. The binding to the GT-motif (5'-TGGTTT-3') is essential for induction of ADH1 by low oxygen, while binding to the second motif, MBS-2, is not essential for induction. We show that AtMYB2 is induced by hypoxia with kinetics compatible with a role in the regulation of ADH1. Like ADH1, AtMYB2...
متن کاملPhylogeny of Ononis in Iran using nuclear ribosomal DNA and chloroplast sequence data
The genus Ononis,embraces more than 85 species worldwide. In the present study, materials of two subspecies of O. spinosa from different localities of Iran alongside some other native species of the genus were included in phylogenetic analyses. In addition, over 50 accessions were obtained from GenBank. In order to clarify the exact number of subspecies of O. spinosa in Iran, datasets were obta...
متن کاملResolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution.
Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phy...
متن کاملRegulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis.
Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2007